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Introduction to Quantum Monte Carlo methods
Auxiliary field QMC: Slater determinant random walks
• Motivation
• Formulation as a ground-state method

Phase/sign problem
Approximate solution
Applications to molecules & solids
• results for sp & d-electron systems 
• good agreement with experiment

Summary and Outlook

Quantum Monte Carlo method for real 
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Why Quantum Monte Carlo?
Offers the possibility of accurate and robust 
calculations spanning many material types

Density-functional methods (LDA, GGA, …)  are very 
successful except for strongly correlated materials.

Even for weak to moderate correlated materials, 
some desired properties may be sensitive to small 
errors resulting in crucial and qualitative differences 
in predicted properties (e.g. the “volume” problem in 
ferroelectrics).

QMC methods scale algebraically with number of 
electrons.



Basic idea of QMC

Iteratively project out the N-particle ground-state :
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Start with an initial state given by a trial wave function:
(0) .Φ = ΨT

GΨ

Imaginary-time             projection is realized stochastically 
by random walks in an appropriate Hilbert space.
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I) Diffusion Monte Carlo (DMC): random walks in 
coordinate space (standard for real materials)

QMC Random Walks

1 2, ,..., ,= NR r r r
The N-particle many-body wave function is sampled by 
walkers in coordinate space:

II) Auxiliary-Field QMC (AFQMC): random walks in 
Slater-determinant space (mostly lattice models)
Walkers are N-particle Slater determinants: ,φ
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R
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Why auxiliary-field quantum 
Monte Carlo (AFQMC)?

A QMC approach using an arbitrary one-particle basis: 
shares same machinery as in mean-field (HF or DFT) 
calculations
• The one-particle problem is solved exactly with no statistical error 
• Correlation effects are obtained by building stochastic ensembles 

of independent-particle solutions
• Non-local pseudopotentials: straightforward to implement
• Planewaves (implemented) and PAWs (not yet) lead to favorable 

algorithmic scaling as in DFT methods
Opportunities for better approximations to treat sign 
problem, e.g. for weak to intermediate correlation?
Each walker is a full mean-field wave function. Could this 
allow for more convenient calculations of expectation 
values (density, force, correlation functions)?



AFQMC Methodology
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Ground state projection from trial wave function:

Becomes a random walk in Slater-determinant space:
( 1) ( )( ) .n nBφ σ φ+ ←

.φφ
φΨ = ∑G wProduces a Monte Carlo sample of the ground state:

Phase/sign problem: fluctuating phases of determinants cause 
numerical accuracy to decay exponentially.

( )Re 0.φΨ >TA simple constraint does not work well:

H-S transform

v is a 1-body complex operator in general



New AFQMC Method: Importance 
Sampling Transformation

Propagator is modified:
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A shift or “force bias”    (Rom ’97) is introduced, and the 
propagator can be written in terms of the local energy EL:
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Produces a Monte Carlo sample of phaseless determinants
with real weights:
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The mixed estimator for the ground state energy is 
phaseless:
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Phaseless walkers, continued



One more problem:

Re T φΨ

Im T φΨ

In random walk 
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Features of New AFQMC Method
• The mixed estimator for the ground state energy is 

not variational, i.e. no upper bound property on
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• Leads to fixed node DMC formalism when expressed 
as random walk in real-space (Hubbard-Stratonovich
decomposition of kinetic energy).

• Reduces to the constrained-path random walk 
[Zhang et al., PRB 55, 7464 (97)] for real Hubbard-
Stratonovich fields:

0.φΨ >T



Imaginary Time

E (Ry)

fcc Si: 2-atoms, 8 electrons

Phase/sign problem
for free-projection

10,000 walkers
= 0.05 a.u.τ



( )Re 0φΨ >T

New methodExact

Jellium: 2 electrons, rs = 10

Ecorr (Ry)

Imaginary Time

5,000 walkers
= 0.01 a.u.τ



Some methodological details
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The Hamiltonian acts in the subspace spanned by 
planewaves with



Applying the HS propagator:
an illustrative example
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 done using iterated application of FFT's
 typically 4 for realistic  
 scales like ln( )
 in practice the local part of the pseudopotential,

  ( ) ( ),  is included with the aboveL
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Other details
All results used a single-determinant trial wave function, 
with orbitals generated by ABINIT, with no further 
optimization
OPIUM Kleinman-Bylander type LDA pseudopotentials
Periodic boundary conditions
All calculations done at experimental bond lengths or 
lattice parameter
semi-core states included where appropriate,
e.g. Ti(3s, 3p)



Si fcc cohesive energy (eV)

4.63(2)(Kent et al. 1999)DMC

4.62(8)Exper.

4.59(3)4.51(3)3.79(4)AFQMC

5.0864.8363.836LDA

∞54 atoms16 atoms

216 electrons; 5209 plane waves
AFQMC Coulomb finite-size and zero-point 
corrections from Kent et al.



Summary: dimer binding energies (eV)

Dimer LDA AFQMC DMC [1,2] Exp
Be 0.53 0.07(2) 0.05(3) 0.11(1)
Si 3.88 3.12(8) 3.19(1) 3.21(13)
P 5.97 5.09(10) 4.68(1) 5.03
S 5.61 4.4(2) 4.34(1) 4.41

[1] Grossman, J. Chem. Phys. 2002, excluding Be.
[2] DMC Be: Schautz et al. 1998. Standard DMC does not bind 

with optimized Jastrow times a single Slater determinant.



Be2 dissociation energy

[1] 15x15x20 a.u.3 simulation cell; Ecut = 25 Ry; 9,467 PW’s
[2] Schautz et al. 1998. Standard DMC does not bind with 

optimized Jastrow x single Slater determinant.
[3] Baer et al., 2000.

Method Energy (eV) (at expt bond length 4.63 a.u.)

Hartree-Fock unbound
LDA [1] 0.53
This AFQMC [1] 0.07 (2)

Experiment 0.11 (1)
DMC [2] 0.05(3) Jastrow * multi-determinant trial w.f.

AF QMC [3] 0.0 (2) phase problem



P2 dissociation energy

[1] 14x14x18 a.u.3 simulation cell; Ecut=36Ry; 12,875 PW’s
[2] Fixed-node DMC (Grossman, 2002). 
[3] DMC Jastrow*multi-determinant trail w.f.’s, 66 

determinants for P and 269 for P2 (Grossman, 2002).

Method Energy (eV) (at expt bond length 3.58 a.u.)
LDA [1] 5.97
AFQMC [1] 5.09(10)

Experiment 5.03(2)
DMC [2] 4.68(1) Jastrow * single-determinant trial w.f.
DMC [3] 4.83 Jastrow * 269 deter. for P2; 66 for P



O2 and PbO dissociation energy (eV) 
Preliminary!

LDA AFQMC DMC [1] Exp
EB(O2) 7.6715 5.85 (35) 4.94 (02) 5.2
EB(PbO) 6.1844 4.22 (67) --- 4.1

[1] Grossman, J. Chem. Phys. 2002.

20 electrons: O(2s2,2p4); Pb(5d10,6s2,6p2)
10x11x17 a.u.3 simulation cell; Ecut = 50 Ry, 11171 planewaves
experimental bond length



TiO binding energy (eV) - Preliminary!

18 electrons: O(2s2,2p4); Ti(3s2, 3p6, 3d2, 4s2)
10 x 11 x 17 a.u.3 simulation cell; Ecut = 50 Ry, 11,197 planewaves
bond length: PBE = 1.59 A; experiment = 1.62 A
On a 667MHz Compaq Alpha processor, one time-step takes ~ 20 seconds 
per walker. About five days were required to achieve an accuracy of 0.2 eV  
using 200 walkers on 10 processors, about 80 Mb/processor.

DFT GGA-PBE 7.2
DFT GGA-PW91 [1] 7.45

DFT B3LYP [1] 6.62

VMC (HF) [1] 6.0(1) Jastrow * single-determinant trial w.f.
DMC (HF) [1] 6.3(1) Jastrow * single-determinant trial w.f.
DMC (B3LYP) [1] 6.9(1) Jastrow * single-determinant trial w.f.

DMC (MCSCF) [1] 6.7(2) Jastrow * multi-determinant trial w.f.

AFQMC 6.65(26)
Experiment [1] 6.98

[1] Wagner & Mitas, Chem. Phys. Lett. 370, 412 (2003).



Summary and Outlook
Described a QMC method with auxiliary fields (AF) to treat 
extended-interactions (complex AF) without sign/phase 
problem (approximate).
Simple trial wave function
Ab-initio ground-state calculations using this framework 
show promising results.
Potentially a method to systematically go beyond LDA 
while using much of its existing machinery



Summary and Outlook
To do:

More applications:  strongly correlated systems, ...
Algorithm

• Better pseudopotentials
• Implementing calculation of expectation values
• Further improvement: e.g. other 1-particle basis, 

different HS transformations, … ?
• Forces?
• Finite-T generalization [done for real HS-fields by 

Zhang, PRL 83, 2777 (1999)]?
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